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Abstract

The problem considered by the MISG was that of rock sizes obtained
during targeted blasting. The goal is to determine the average size distribution
of rocks given the conditions and explosives used. The Kuz-Ram model is an
empirical model that has been used over the past 25 years for estimating
the mean fragment size and distribution. The model is inadequate because it
contains an unknown factor that may vary by an order of magnitude. However,
we also believe it is conceptually flawed because important rock properties
such as rock brittleness and yield strength are not accounted for ‘at first
order’ and the model result is dimensionally inconsistent.

During the MISG a dimensional analysis was performed in an attempt to
redress this error. In addition, two new models of the dynamic fracturing
process were derived; a ‘breaking spring model’ and a continuum model. The
breaking spring model is shown to display the ‘correct’ stress/strain behaviour
for ductile rock types, but needs modification to handle hard rocks. Initial
work on the continuum model seems to give some promise of explaining the
rock behaviour during blasting.
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2 Rock strength, brittleness and blast fragmentation

1 Introduction

Knowing the size of the fragments produced during rock quarry blasting is of major
engineering importance. If the rocks are to be used for some downstream operation
(e.g. building a breakwater) then they need to fit within certain size parameters.
If they are just to be removed, then they need to be of a suitable size for efficient
removal.

There is a standard model for size estimation referred to as the Kuz-Ram mod-
el after its creators Kuznetsov, Rammler and Rosin, with the name proposed by
Cunningham [1] in the 1980’s. The limitations of the model are well known, see
Cunningham [1], and Kulatilake [2] but experienced engineers recognise the prob-
lems and are able to adapt. Nevertheless a better model would hopefully lead to
more consistent results not so dependent on experience.

Richard Stacey asked the MISGSA 2016 to investigate the possibility of produc-
ing a better estimate based on Tarasov and Potvin rock brittleness ideas. There have
been many proposed definitions for rock brittleness but the Tarasov index is based
on relatively standard stress vs. strain laboratory tests on rock and energy exchange
arguments, and so is particularly suitable in the present context, see Tarasov and
Potviv [7], and Tarasov and Randolph [6].

The outcomes of the MISGSA investigations are presented here. In Section 2 we
present the Kuz-Ram model and briefly describe the Tarasov brittleness index ideas
(and the related rupture energy index), and then go on to use scaling arguments
to suggest a possible empirical formula which we believe may provide for better
fragment size estimates. Rigorous testing would be required to check if this were so,
but the principle of having a dimensionally correct formula is important and should
be adhered to even if the form is different to that proposed herein.

There have been many mechanistic models proposed to describe both crack prop-
agation and fragmentation; an excellent recent review of this material was produced
by Zhang and Zhao [4]. Such models attempt to track the physics of the frag-
mentation process for specific blast layouts in simple known cases. In Section 4.1
we produce a new mechanistic model for fragmentation. The model is based on
a breaking springs analogue and closely ties in with the Tarasov brittleness index
observations; in this way it differs from previous models. The various features asso-
ciated with the stress/strain experiments have been identified and it is hoped that
this model will produce useful results for dynamical simulations of the fragmenta-
tion process. In Section 5 a second (continuum) mechanistic model is presented
based on state change ideas. This continuum model again ties in with the Tarasov
work and results in a more detailed description of the fragmentation process. Such
a model, when fully developed, may enable more accurate estimates to be made for
the fragmentation process. Conclusions will be drawn in Section 6.
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2 Empirical Models and Background

2.1 The standard Kuz-Ram model

In general terms with rock blasting in quarries more explosive leads to smaller frag-
ments and tougher rocks result in larger fragments as born out in field tests. There
is a standard model (the Kuz-Ram model) that has been used in the mining industry
for 25 years for estimating fragment size and distribution. This model determines
the mean fragment size as

xm = AK−0.8Q1/6(
115

RWS
)
19
20 , (1)

where xm is the mean particle size (m), K is the powder factor (kg explosive/m3)
and Q is the mass of explosive in a single hole (kg). RWS is the relative weight
strength of the explosive used relative to TNT, 115 being the RWS of TNT, and A
is a ‘rock characterisation factor’, varying over the range 0.8 to 22.

This rock characterisation factor A estimates the effect of geology on fragmen-
tation, and is defined as

A = 0.06(RMD +RDI +HF ), (2)

where RMD is the rock mass description, which takes into account the rock condi-
tion (powdery/friable) and the distribution and state of joints, RDI is the density
influence and HF is the hardness factor. This takes into account the elastic mod-
ulus and compressive strength of the rock. In addition, a multiplicative ‘correction
factor’ is often introduced to bridge the gap between observed and calculated on-site
results (typically in the range 0.5− 2). For more details see Cunningham [1].

In addition to the above formulae there is the fragment distribution formula

Rx = exp [−0.693(x/xm)n] (3)

with n = 0.7− 2. Research has shown that this model underestimates the contribu-
tion of fines in the distribution [2].

The advantage of these formulae is that they are simple and require little on-site
data. However, they do not take into account specific features of the blast (rock
type, bore hole spacing, geometry of the site....). Mechanistic models have been
developed that aim to quantify such effects, but such models necessarily require
more specific input from the site, see Zhang and Zhou[4], and are thus less likely to
be used in practice.

The Kuz-Ram formula is incorrect as a dimensional statement and was evidently
obtained as a best fit using available data and the chosen parameters. Subsequent
improvements were achieved by introducing modifications to the basic result. Of
particular concern is that rock properties, which are clearly of central importance
for fragment size determinations, appear in the form of a rock parameter A which
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is really an ‘add on’; in fact A has been seen to vary over a very large range (1 to
22) which clearly indicates the central role rock properties play.

Our aim in Section 3 is to produce a better basic model which includes the most
important parameters (and in particular the rock properties) in a dimensionally
consistent way; the results obtained using this model should be more robust and
thus require less adjusting to take into account secondary features.

It should be understood that any simple formula of the Kuz-Ram type will have
restricted applicability. For example there is an inbuilt assumption that the explosive
distribution and design is sensible/standard; so that the explosive energy released is
used for cracking the rock rather than producing powder. Under such circumstances
one might hope that the formula would provide useful guidance.

2.2 The Tarasov/Potvin brittleness index

There are many definitions of ‘brittleness’ but in context it is the index introduced by
Tarasov and Potvin [7] that has most relevance to fracturing. The brittleness ‘index’
defines the extent to which a rock is ’brittle or hard’ (Class II) or ’ductile’ (Class
I) and, as defined by Tarasov and Potvin, is based on the standard stress/strain
laboratory test for rocks. Granite would be regarded as a brittle material and
sandstone as a ductile material. Typical stress vs. strain results for a ductile material
are shown in Figure 1 (Left), and for a brittle material in Figure 1(Right). The work
performed on the sample by the externally applied compressive stress is the area
under the stress/strain curve up to the final state and one can identify the various
energy storage components as areas on this figure.

With increasing externally applied stress both solids behave elastically until the
yield/peak stress Y is reached. After Y ‘stress control is lost’ and the sample
ruptures. If C is the final stress state then the red area represents the ‘elastic
energy stored’ (ie remaining in the sample) and the grey area represents the rupture
energy (energy used to rupture the material). For ductile (Class I) materials external
work is needed to cause this rupture and the rupture energy is positive. For brittle
(Class II) materials some of the stored elastic energy is used to rupture the material
(the grey area), some is retained as elastic energy in the material (the red area);
the rupture energy is negative in this case. Additionally some of the initially stored
energy at peak stress Y is released in the form of heat etc. (the yellow area). For
more details see Tarasov [7].

Note the very different shape of the stress/strain curve of the ductile and brittle
materials after the yield stress Y is exceeded. The stress/strain curve for the ductile
material has the familiar negative slope (corresponding to a negative post-peak
modulus) associated with the plastic behaviour of metals. The stress/strain curve for
a brittle material on the other hand ‘folds back’ on itself and the curve slope remains
positive (corresponding to a positive post-peak modulus) after a small transition.

Thus in the ductile material external work needs to be performed on the sample
to produce rupture, whereas in the brittle material case some of the elastic energy
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Figure 1: Triaxial compression tests on samples: Left: Class 1 (ductile/plastic)
solids, Right: Class 2 (hard/brittle) solids.

already stored in the material during compression is used to rupture the sample.
Also ‘excess’ energy is released in the form of heat, vibration etc. so the process can
be ‘self sustaining’, see Section 5. The important thing to notice is that all such
components can be associated with specific areas under the experimentally obtained
stress/strain curve for the quarry rock.

As one might expect, the brittle stress/strain curve in the brittle rock case under
conditions close to peak-stress can only be produced by using careful experimental
techniques. What happens normally is that the stress level dramatically (and uncon-
trollably) reduces as the peak stress level Y is approached, while the strain increases
(the rock slab snaps forward). Technically speaking the pre-yield stress/strain solu-
tion becomes unstable close to Y and small perturbations cause a transition to the
other post-peak stable solution branch.

Real rocks are neither totally brittle nor totally ductile, but based on the above
stress/strain curves Tarasov and Potvin defined the ‘brittleness index’ K1 as the
ratio of the elastic energy withdrawn from the material during the failure process to
the rupture energy (ie energy required to produce rupture); if this ratio is greater
than unity then the process will be self sustaining (the brittle case), whereas if it is
less than unity then energy would need to be supplied to sustain the rupture process
(the ductile case). The sign of the brittleness index dramatically effects the dynamic
fracture behaviour and this will be discussed later.

In the present fragmentation context, however, we are interested in knowing what
fraction of the work done by the explosive force on the material particle is used to
rupture the rock; we thus define ‘the rupture energy index’ (β) as the ratio of the
rupture energy to the external energy input (or work done on a material particle by
the explosive force). Thus the rupture energy index is defined as

β = ± grey area

white area + grey area
,

where the negative sign corresponds to Class 2 brittle rocks where internal elastic
energy is used to fragment the sample and the positive sign corresponds to the case
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in which external work needs to be performed to fragment the sample (areas relate
to Fig. 1). The rupture energy index and the fragmentation size distribution can
be obtained using triaxial stress/strain experiments.

The underlying assumption involved in work to follow is that the experimental
stress/strain results mirror what will happen to material particles under quarry
blasting conditions, so that the index β determines the proportion of explosive energy
used to rupture the rock and in particular determines the effect of rock brittleness
on quarry blasting. We present three possible fragmentation models with different
emphases: a scaling model, a spring model, and a continuum model.

3 A Scaling Fragmentation Model

The aim is to improve on the Kuz-Ram model using dimensional analysis. An outline
of the method of dimensional analysis and details in the derivation of the results
presented in this section are given in Appendix A 6.

Dimensional analysis proceeds by identifying the n (say) primary physical pa-
rameters and then determining the possible combinations of these parameters that
are required to produce the desired dimensional quantity. The Buckingham Pi The-
orem not only asserts this dimensional consistency result but also determines the
number of dimensionless products that can arise as being p = n − k, (n ≥ k + 1)
where k is the number of independent physical dimensions involved. In our present
case the aim is to produce an expression for the mean size of a fragment (dimen-
sion L) produced by an explosive charge. One might expect the explosive charge
per unit volume per time and fracturing rock properties such as yield strength and
brittleness to be primary parameters. Other rock parameters such as the Young’s
modulus or elastic wave speed might also be important and could be required to
produce a dimensionally consistent result.

Model parameters

We assume for a start that the following parameters are primary:

• Mean fragment size xm: dimensions L

• Yield stress Y : dimensions M
T 2L

.

• Energy per unit time per unit volume due to explosive charge E : dimensions
M
T 3L

.

• The rupture energy index β: dimensionless.

Based on the previous section we assume that the available energy for frag-
mentation is βE : dimensions M

T 3L
; this enables us to reduce the number of

physical parameters.
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• Speed of propagation of the elastic wave (primary wave) CP , with dimensions
L
T

We thus have four parameters and three physical dimensions L,M, T , so that
just one dimensionless product can arise according to the Buckingham Pi Theorem.
The possible combinations for determining xm are:

xm = AY a(βE)bCc
P = A

(
M

T 2L

)a(
β
M

LT 3

)b(
L

T

)c
and dimensional compatibility occurs provided:

L : 1 = −a− b+ c,
M : 0 = a+ b,
T : 0 = −2a− 3b− c.

Thus a = 1, b = −1, c = 1, which gives

xm = A
Y CP
(βE)

, (4)

where CP =
√

E(1−ν)
ρ(1+ν)(1−2ν)

; E is Young’s modulus, ν Poisson’s ratio and ρ is the

density.
Note that this formula is dimensionally correct and includes the important rock

properties in a way that seems intuitively correct. For example the fragment size
is anticipated to be inversely proportional to the effective energy release rate per
unit volume and the fragment size varies inversely with the rupture energy index
as observed. In the limit as β → 0 the fragmentation energy goes to zero, and the
particle size thus goes to infinity. The β = 0 case separates out brittle fracture from
ductile rock failure.

It should be recognised that the above result presumes that the four physical
parameters selected are the primary parameters determining fracture. If a different
list was selected then a different result would be obtained, for example

xm =
Y 3/2

(βE)ρ1/2

is also a dimensionally correct combination 1. The preliminary results obtained in
Section 5 do however suggest that the CP term is a primary physical parameter and
that the density dependence is correctly absorbed into the CP term.

Such issues of parameter choice would be settled if (a) the correct defining e-
quations were available and dimensionless products were obtained by scaling these

1The significant difference from the previous result is that in one case xm ∝ Y 3/2 whereas in
the other case xm ∝ Y E1/2.
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equations (this is attempted in Section 5), and (b) if available data supports the
results obtained.

There are many other features/parameters of a quarry explosion that are not
included in the above scaling exercise that are known to increase fracturing efficiency,
but we think of these as being of secondary importance. For example it is known
that a time delay between charge ignition at different locations improves efficiency;
if B is the spacing then an enhancement in effectiveness can be achieved if a delay
of about ∆t = B/CP is used (to avoid interference). According to the Buckingham
Pi Theorem each additional parameter will result in an additional dimensionless
product. For example the spacing effect introduces two new physical quantities ∆t
and B, and therefore two dimensionless products can be included in (4) as

xm = A

[
Y CP
(βE)

]
fn(

CP∆t

B
,

Y

βE∆t
),

with the function fn(.) scaled to unity under most efficient conditions so as not
to modify the value of A. Additionally the formula can be adjusted to take into
account the effect of hole spacing B compared with rock joint spacing J ; in this case
(4) would be modified as

xm = A

[
Y CP
(βE)

]
fn(

B

J
,
CP∆t

B
,

Y

βE∆t
).

This approach of adding in additional factors in a dimensionally consistent way
could be employed to improve the primary result after this result is established. The
actual determination of such functions would require data fitting so that it would
be impractical to deal with more than one additional factor.

The important question is whether the result (4) is likely to be more reliable
than the Kuz-Ram model? The answer is “yes”, providing the identified parameters
are primary. This can only be decided observationally: if the model is better then
the parameter A will vary little with rock type and explosive arrangement, assuming
a reasonable, standard charge pattern.

4 Mechanistic Models

The fragmentation process is complex. The application of an external force to a
brittle rock causes micro cracks to extend and join up with other micro cracks
forming a discernible crack which continues to extend (subcritically) as the applied
stress increases until the crack reaches a critical length. At this stage the elastic
energy released due to crack extension exceeds that required to form the crack
surface, so the crack extends spontaneously, moving with a speed of roughly 2/3
of the speed of travel of Rayleigh waves for the material. An excellent account of
single crack extension can be found in Broberg [3]. This release of elastic energy
stops the growth of other cracks that may have been in the process of extending
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so that usually a single crack dynamically extends during this phase. The further
application of the external force results in a transition from ‘single fracturing or
splitting’ to ‘multiple fracturing or pulverisation’, and this later process seems to be
distinctively different, occurring much more slowly and driven by strain rate, see Li
et al [5]. Many models have been developed to try to describe this later stage but
the process is not well understood. An excellent recent review of the literature can
be found in Zhang and Zhao [4].

In view of the above results it seems that an understanding of single crack exten-
sion is unlikely to lead to an understanding of fragmentation. In the next subsection
we will examine a spring model which may lead to a better description of the dy-
namic process. A second continuum model based on ‘state change’ ideas is presented
in Section 5. In both cases the models developed are based on Tarasov’s brittleness
index ideas.

4.1 A breaking springs model

The formation of cracks in a material subjected to stress is likened to the breaking of
springs when subjected to stress levels that exceed their breaking strength. In this
analogy model, intact rock corresponds to intact springs and cracks correspond to
broken springs, with the easily breaking springs corresponding to weaker material
pathways through the solid material. The spring situation envisaged is depicted
in Figure 4.1. Also the situation envisaged is one in which the quarry consists of
material represented by the springs and the applied force in the spring arrangement is
associated with the gas pressure associated with the explosion. In reality this force is
‘internal’ but here we treat it as an external force applied at the edges of the quarry.
The idea behind this work is simple: if this setup leads to stress/strain relations
similar to Class I and II models, and the various parameters can be directly related
to the material parameters (yield strength, brittleness, Young’s modulus) then the
model may be usefully extended to handle dynamic situations such as fragmentation.
Of course this will only work if detailed cracking mechanics is not ‘controlling’ as
suggested above.

Here we demonstrate with a one dimensional model, but in principle it is possible
to do this in three dimensions with directional behaviour of the springs. Initially
there are n0 springs that are stretched by an external force Text. As a demonstration,
we assume the individual springs have the same spring constant (k), so that

Ts = kx, (5)

where x is the extension, but have different breaking strengths T crits .

Spring breakage distribution

If we assume a normal distribution for (individual spring) breakage tension with
average breaking tension T̄ crits and with standard deviation, σ, then we have the
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Extension force

n springs

(Some broken)

Figure 2: The spring analogue to rock fracture. The n springs are subjected to an
external force Text. Individual springs are therefore subjected to an external force
of Ts = Text/n. Some break and the remaining springs bear the load.

frequency distribution given by (see Figure 3)

f =
1√
2πσ

exp

[
−
(

(T crits − T̄ crits )2

2σ2

)]
.

With such a breakage distribution the application of a (individual) tension of Ts

Ts Stress(T )

n

Figure 3: An example of the breakage distribution of springs, where n is the number
of bonds (springs) that will break at the given value of stress (T ). All springs with
breakage stresses in the shaded region, i.e. T < TS are assumed to break. The load
is then re-distributed among the remainder.

will cause all springs with breaking tensions less than Ts to break, so strings in the
shaded area in the figure will have broken, leaving the remaining n springs to bear
the load.
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Multiplying the individual tension vs. stretching relationship (5) by the number
of intact springs n we obtain the global stress vs. strain relationship

nTs ≡ Text = (nkl0)
x

l0
≡ Eeff

x

l0
;

thus the effective Young’s modulus of the material is defined in terms of the spring
constant k and the number of springs n, explicitly

Eeff = E0(
n

n0

). (6)

We now identify the number of surviving springs supporting the load as:

n

n0

= 1−
∫ Ts

0

f(Ts)dTs,

which gives us an explicit expression for the effective Young’s modulus as

Eeff = E0

[
1−

∫ Ts

0

f(Ts)dTs

]
(7)

which integrates to give

Eeff (Ts) = E0

[
1− Erf

(
Ts − T̄s√

2πσ

)]
, (8)

in the normal distribution case. Thus the effective Young’s modulus is reduced due
to spring breakage and can be explicitly determined as a function of the applied
stress. The resulting global stress/strain result is given by

Text = nTs = E0

[
1− Erf

(
Ts − T̄s√

2πσ

)]
x

l0
. (9)

Results

The results of an example case are displayed in Figure 4. The stress-strain curves
start bending as the stress enters the breaking stress region and asymptote to a Ts
with all springs broken. The rate of approach to this asymptote is dependent on the
width of the breaking stress distribution σ.

It should be noted that if the applied stress is cycled then no further springs
are broken as the stress is reduced and subsequently breakage will reoccur when
stress levels again exceed the previous maximum stress level, as is displayed in
Figure 4. When the applied stress level is reduced to zero there will be a residual
displacement which will be added to by successive increases in stress level above the
previous maximum level. This does coincide with observations.

One can associate rock characteristics with spring model parameters. The ef-
fective Young’s modulus is as indicated earlier (6). The yield strength is identified
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with the asymptote and the brittleness index relates to the areas in Figure 4. How-
ever, some features of the stress/strain results are not duplicated. The stress/strain
curves dip after the yield strength is reached. Also while the shape is right for
Class II brittle rocks, Class I models are not covered and it may be that the elastic
constants need to be normally distributed as well as the breakage distributions.

Hopefully the inadequacies can be addressed and if so the next stage will be
to extend the results to cover the dynamics. It is a simple matter to introduce
momentum by having springs with a distributed mass. Such a model should lead to
a better understanding of the effect of the quarry boundaries on fragmentation.

Ts

x

TA

Figure 4: Stress vs strain results for the springs model. The 2nd and 3rd parallel
lines with positive slope correspond to the curve if the stress is reduced from two
different points.

Simulations for random distributions

The above results were obtained for a normal distribution of breaking tension but
extend to any distribution of breaking tensions. For example, if one uses a randomly
generated distribution with prescribed mean and variance then for the cases shown
in Figure 5 the results obtained are as shown in Figure 6.

As would be expected given the analytic results above a narrow breakage dis-
tribution results in a narrower/sharper transition from elastic to non-elastic post
yield condition behaviour. Note that these results do not provide a model of Class I
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Figure 5: Randomly generated normal distributions of spring breakage tensions for
σ = 1, 2, 4. Left to right - decreasing brittleness. N = 1000 springs/bonds.
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Figure 6: Stress-strain curves from the randomly simulated distributions in Figure
5. Less brittle implies wider curve. The results agree well with Class II materials,
but Class I ‘plastic’ behaviour isn’t observed.

behaviour. Further consideration of this approach may yield curves that follow that
situation, but this was not considered at MISG, and is the subject of further work.

The dynamic extension: some thoughts

Simple adjustments to the above model will probably not work because the real
situation is dynamic even in the ‘static’ stress test. Thus the stress/strain curves
displayed in Figure 1 can only be obtained by using special experimental techniques.
As the yield stress is approached ‘internal’ dynamics takes over2; the strain increases
dramatically, or frictional forces dissipate the energy. The springs equation is given
by

n0m
d2u

dt2
+ ν

dx

dt
+ nkx = T ext(t),

Before the yield condition is reached the spring term balances external forcing but
after yield conditions are reached the external force term becomes irrelevant and the
frictional term takes over for Class I materials, and the momentum term takes over
for Class II materials. Eventually a balance between applied force and ‘elastic stress’
is reached but with a loss in energy in the Class I case, and with a unrecoverable
displacement in both cases. Note that again springs break leaving the remainder to
take over, but all the n0 springs carry momentum.

5 A Continuum State Change Model

The above model is limited in application and therefore we considered another ap-
proach based on state change and brittleness ideas. The situation envisaged is as
shown in Figure 7. Suppose the end of a semi-infinite rock face at x = 0 is struck

2The extending cracks release elastic energy that causes further fracturing
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X

Rock

Figure 7: A continuum model of fragmentation. A stress pulse is applied at x = 0 to
the region x > 0. If the pulse strength exceeds the yield stress Y then the material
will immediately fail, but otherwise the pulse will propogate into the material.

impulsively. If stress levels generated are less than fracture levels Tcrit (equivalently
Y ) then a longitudinal pressure pulse travels away from the face at speed

√
E0/ρ,

and assuming there is no energy dissipation the displacement profile will propagate
unchanged.

If, however, stress levels exceed Tcrit then the rock will partially crush/crack, a
situation depicted in Figure 8. Note that in this case the transmitted stress wave is
reduced in amplitude due to rock crushing. Under extreme conditions no wave will
propagate away from the crushed zone.

X

Rock

Crushed Rock

Rock Crushing

Figure 8: Rock is cracked/crushed by the applied impulse and a weakened pulse
continues into the material.

5.1 Equations

If a stress pulse is applied at x = 0 then this will result in a propagating pulse into
the region x > 0 provided the stress at x = 0 does not exceed Y . Stress levels
greater than Y are not possible because of material failure. With this in mind it is
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Stress

Strain

E0 E1

(τxx)

(ux)

Figure 9: The stress/strain model for the cracking material. In the ductile rock
Class I case the effective Young’s modulus E1 < 0 beyond the maximum stress
point whereas in the brittle rock case Class II case E1 > 0

best to prescribe the displacement at x = 0. Cauchy’s first law of motion gives

τxx,x = ρutt,

where u(x, t) is the particle displacement and τxx is the horizontal stress.
Assuming the impulsive force is uniform and is normal to the face, longitudinal

stress waves will be generated and the relevant stress-strain relationship is

τxx = E∗ux, with

E∗ =


E1 for τxx < Y and ux < u1x
0 for τxx = Y and u1x < ux < u2x
E2 for τxx < Y and ux > u2x

, (10)

where we have modelled the stress-strain curve as in Figure 9, and u1x and u2x are
strain levels associated with the yield stress τxx = Y , with u1x < u2x. Note that E2

will be either less than zero (the Class II brittle rock case) or greater than zero in
the Class I ductile rock case. Now eliminating stress in favour of strain we obtain
the equation

E∗uxx = ρutt (11)

where E∗ is given by equation (10) for the undamaged, damaged with constant
(yield) stress, and damaged regions, respectively.

5.2 Ductile and brittle rocks

Note that across the yielding front the equation changes from elliptic to hyperbolic
type for ductile materials, but not for brittle materials in which case the type remains
hyperbolic. Thus in the brittle case the energy decays slowly and waves travel
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through the front. For ductile materials the impulse is quickly damped. The extent
of damage (cracking) can be assessed using a state change idea. The internal energy
of the cracked rock is different to that of intact rock. The primary aim of the analysis
is to determine the speed of travel of the front, the extent of wave propagation, and
the expected fragment size.

5.3 Front conditions

Assume the front moves with speed V (to be determined). A material particle
located at x ahead of the advancing front will see the front approaching at speed
−V . The compressive stress will build up elastically to the yield stress level Y , then
rupture will commence and continue until the particle is transformed into its final
cracked state. The transition is assumed to be quantified by the stress/strain curve
as depicted in Figure 1 with the stress level changing from Y with associated zero
strain to the final values corresponding to C in the figure. During this process there
will be a change in the internal energy of the particle (due to the opening up of
surfaces), again as depicted in the figure with the change dependent on the stored
elastic energy and the external work done. As described earlier brittle rocks use
the internally stored elastic energy to rupture the material particle, whereas ductile
rocks require additional energy from the blast.

6 Conclusions

This is a very difficult problem because the physics is not well understood and it is
not clear what form of output would be most useful. What is certainly not required
is a complex computational model, even if correct; such a model would be useless in
the field requiring too much data input for practical use. The ideal outcome would
be a better Kuz-Ram type formula for determining fragment size.

Using scaling ideas we have obtained a formula that is likely to be an improve-
ment on the standard Kuz-Ram model. Certainly the formula is dimensionally
consistent, contains essential parameters and it should be equally applicable to s-
mall scale laboratory conditions and large scale conditions in quarries and mines.
However, there are other parameters that might be chosen, so further substantiation
and comparison with data will be required to finalize the appropriate parameters.

A springs model of the fragmentation process has been developed which is en-
couraging but requires further development to deal with Class II rocks; suggestions
have been made for an appropriate model and analysis is underway.

A model based on state change ideas has been suggested which, at least super-
ficially displays behaviour which is encouraging. In particular the model developed
exhibits very different behaviour for Class I and Class II rocks and it may turn
out that a single formula for fragment size is inadequate. However, with further
consideration the ideas considered at the MISG show some promise for finding a
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more reliable estimate of fragment size and distribution and developing a better
understanding of the processes involved.
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Appendix A: Dimensional Analysis

The main theorem in dimensional analysis is the Buckingham Pi theorem. An
elementary statement of the theorem is as follows.

Consider a physical equation containing n physical quantities (variables and pa-
rameters) which depend on k independent dimensions and that n ≥ k+1. Then the e-
quation can be rewritten in terms of p = n−k dimensionless products, Π1 ,Π2 , · · · , Πp ,
constructed form the original n quantities, as

F (Π1 ,Π2 , · · · , Πp) = 0 , (A.1)

where F is an arbitrary function.
We use dimensional analysis to derive expressions for the mean size xm.

Consider first the four physical quantities xm, Y , βE and cp. The dimensions of
these quantities are



18 Rock strength, brittleness and blast fragmentation

[xm] = L , [Y ] =
M

LT 2
, [βE ] = β

M

LT 3
, [cp] =

L

T
. (A.2)

There are therefore three independent dimensions, M , L and T . Thus n = 4, k = 3
and p = n − k = 1. One dimensionless product can therefore be constructed. All
dimensionless products are of the form

Π = xam Y b (βE)c cdp . (A.3)

For the product Π to be dimensionless it must satisfy[
xam Y

b (βE)c cdp

]
= M0 L0 T 0 , (A.4)

that is
[xm]a [Y ]b [βE ]c [cp]

d = M0 L0 T 0 , (A.5)

which is satisfied provided

La
(
M

LT 2

)b(
β
M

LT 3

)c (
L

T

)d
= M0 L0 T 0 . (A.6)

Equating the exponents of M , L and T gives

M : b+ c = 0 , (A.7)

L : a− b− c+ d = 0 , (A.8)

T : −2b− 3c− d = 0 , (A.9)

which consists of three equations for the four unknowns a, b, c and d. We solve for
b, c and d in terms of a because an expression for xm is required:

b = −a , c = a , d = −a . (A.10)

The solution (A.10) can be written in the form of column matrices as
a
b
c
d

 = a


1
−1

1
−1

 . (A.11)

The right hand side of (A.11) forms a basis for the column matrix on the left hand
side. The basis consists of only one column matrix and therefore there is only one
dimensionless product, consistent with the Buckingham Pi theorem. Since Π is of
the form (A.3) it follows from (A.11) that

Π1 = x1m Y −1 (βE)1 c−1
p =

xm βE
Y cp

. (A.12)

By the Buckingham Pi theorem the original physical equation can therefore be
rewritten as
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F

(
xm βE
Y cp

)
= 0 , (A.13)

where F is an arbitrary function. Since equation (A.13) is satisfied for all values of
Π1 it follows that Π1 must be a constant. Hence

xm = A
Y cp
βE

, (A.14)

where A is a constant. In the derivation of (A.14) in Section 3 the form of xm as
a product of powers of Y , βE and cp was assumed. We see that the form (A.14)
follows from the Buckingham Pi theorem. In general, when n = k + 1, any one of
the n quantities can be expressed as a product of the other n− 1 quantities raised
to appropriate powers to give the correct dimension. The expression (A.14) does
not contain an arbitrary function.

Consider next the five physical quantities, xm, Y , β E , ρ and cp where the density
ρ replaces cp as one of the four physical quantities thought to be primary. Then
n = 5 and since

[ ρ ] =
M

L3
(A.15)

there are still three independent dimensions and k = 3. Thus p = n − k = 2 and
two dimensionless products can be constructed. All dimensionless products are of
the form

Π = xam Y
b (βE)c ρd cep . (A.16)

For the product Π to be dimensionless it is necessary that[
xm
]a [

Y
]b [

β E
]c [

ρ
]d (

cp
)e

= M0 L0 T 0 . (A.17)

and therefore that

La
(
M

LT 2

)b (
β
M

LT 3

)c (
M

L3

)d (
L

T

)e
= M0 L0 T 0 . (A.18)

By equating the exponents of M , L and T in (A.18) we obtain

M : b+ c+ d = 0 , (A.19)

L : a− b− c− 3d+ e = 0 , (A.20)

T : −2b− 3c− e = 0 , (A.21)

which consists of three equations for five unknowns. We solve for b, c and d in terms
of a and e:

b = −3

2
a− 1

2
e , c = a , d =

1

2
a+

1

2
e . (A.22)
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Expressed in matrix form the solution (A.22) is

a

b

c

d

e


= a


−3

2
1

1

2
0


+ e



0

−1

2
0

1

2
1


. (A.23)

The right hand side of (A.23) forms a basis of two independent column matrices
for the column matrix on the left hand side. There are therefore two dimensionless
products, consistent with the Buckingham Pi theorem. Since the dimensionless
products are of the form (A.16) if follows from (A.23) that

Π1 =
xm βE ρ1/2

Y 3/2
, Π2 =

cp ρ
1/2

Y 1/2
. (A.24)

By the Buckingham Pi theorem the original physical equation can be written as

F (Π1 , Π2) = 0 , (A.25)

or equivalently as

Π1 = f (Π2) , (A.26)

where f is an arbitrary function. Hence

xm =
Y 3/2

βE ρ1/2
f

(
cp ρ

1/2

Y 1/2

)
. (A.27)

When there are only the four physical quantities, xm, Y , βE and ρ, there is only
one dimensional product and (A.27) becomes

xm = A
Y 3/2

(βE) ρ1/2
, (A.28)

where A is a constant.
Finally, consider the seven quantities

xm , Y , βE , cp , ∆t , B , J ,

where ∆t is the time delay between charge ignition, B is the spacing between charges
and J is the rock joint spacing. The quantities ∆t, B and cp are regarded as
independent although a delay time of ∆t = B/cp is sometimes used in practice.
Since [

∆t
]

= T ,
[
B
]

= L ,
[
J
]

= L , (A.29)
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there is still three independent dimensions. Thus n = 7, k = 3 and p = n− k = 4.
Four dimensionless products can be constructed. All dimensionless products are of
the form

Π = xam Y b
(
βE
)c
cdp
(
∆t
)e
Bf Jg . (A.30)

The product Π is dimensionless provided[
xm
]a [

Y ]b
[
βE
]c [

cp
]d [

∆t
]e [

B
]f [

J
]g

= M0 L0 T 0 , (A.31)

that is provided

La
(
M

LT 2

)b (
β
M

LT 3

)c (
L

T

)d
T e Lf Lg = M0 L0 T 0 . (A.32)

Equating the exponents of M , L and T gives

M : b+ c = 0 , (A.33)

L : a− b− c+ d+ f + g = 0 , (A.34)

T : −2b− 3c− d+ e = 0 . (A.35)

There are three equations for seven unknowns which are solved for b, c and d in
terms of a, f , g and e:

b = −a− f − g + e , c = a+ f + g − e , d = −a− f − g . (A.36)

Written in matrix form the solution (A.36) is

a

b

c

d

e

f

g


= a



1

−1

1

−1

0

0
0


+ e



0

1

−1

0

1

0
0


+ f



0

−1

1

−1

0

1
0


+ g



0

−1

1

−1

0

0
1


. (A.37)

The right hand side of (A.37) forms a basis of four independent column matrices
for the column matrix on the left hand side. Hence there are four dimensionless
products in agreement with the Buckingham Pi theorem. It follows from (A.30) and
(A.37) that the dimensionless products are:

Π1 =
xm βE
Y cp

, Π2 =
Y

βE ∆t
, Π3 =

βE B
Y cp

, Π4 =
βE J
Y cp

. (A.38)
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Instead of the dimensionless products Π3 and Π4 we work with the dimensionless
products Π∗3 and Π∗4 , the physical significance of which are clearer:

Π∗3 =
Π3

Π4

=
B

J
, Π∗4 =

1

Π2 Π3

=
cp ∆t

B
. (A.39)

By the Buckingham Pi theorem the original physical equation can be written as

F
(
Π1 , Π2 , Π∗3 , Π∗4

)
= 0 , (A.40)

or equivalently as
Π1 = f

(
Π∗3 , Π∗4 , Π2

)
, (A.41)

where f is an arbitrary function. Hence

xm =
Y cp
βE

f

(
B

J
,
cp ∆t

B
,

Y

βE ∆t

)
. (A.42)

If the rock joint spacing, J , is not included as one of the physical quantities then
there are three dimensionless products and

xm =
Y cp
βE

f

(
cp ∆t

B
,

Y

βE ∆t

)
. (A.43)

In both (A.42) and (A.43) we see that the length cp ∆t, which sometimes is chosen
to equal B in practice, occurs naturally in a dimensionless ratio with B.


